SU-E-J-119: Comparative Evaluation of Respiratory Motion-Corrected Cone-Beam CT Images Derived from Treatment-Day Vs. Simulation-Day Respiration-Correlated CT Scans.

نویسندگان

  • O Dzyubak
  • R Kincaid
  • E Yorke
  • A Hertanto
  • Y Hu
  • A Rimner
  • Q Zhang
  • G Mageras
چکیده

PURPOSE Respiration-induced motion artifacts in cone-beam CT (CBCT) can be corrected using a model of patient motion obtained from respiration-correlated CT (RCCT). This approach assumes that respiration-induced organ deformations at simulation, when RCCT scans are normally acquired, are still valid at treatment. The purpose of this study is to compare lung tumor image quality in motion-corrected CBCT images derived from treatment-day RCCT(tx) to simulation-day RCCT(sim) patient images. METHODS In an IRB-approved study, lung cancer patients receive an RCCT at simulation, and an RCCT, gated CBCT and 1-minute CBCT at one treatment session. CBCT projections from the 1-minute scan are sorted according to breathing amplitude from an external monitor and reconstructed and warped to obtain a motion-corrected MC-CBCT at end expiration. Motion correction uses a model adapted from either RCCT(tx) or RCCT(sim), thus obtaining MC-CBCT(tx) and MC-CBCT(sim) images respectively. A gated CBCT, in which gantry rotation and projection acquisition occur within a gate at end expiration, serves as ground truth for comparison. Quality of MC-CBCT images is evaluated from tumor-to-background contrast ratio (TBCR) values measured by delineating the tumor and annular volume around it on the gated CBCT then transferring the contours and aligning them to each MC-CBCT. RESULTS TBCR is found tobe lower in MC-CBCT(sim) images, relative to MC-CBCT(tx), in four out of five patients with mean 21% reduction in a range 9-39%. In the remaining case, where there was no change in TBCR, tumor motion observed in the RCCT was small (2mm). Tumor motion extent relative to diaphragm is observed to change between RCCT(tx) and RCCT(sim) scans. CONCLUSIONS Preliminary results indicate that deformation patterns in lung do change between simulation and treatment. Such variations may reduce the validity of using simulation data for motion-corrected CBCT at treatment. The findings require confirmation with larger numbers of patients. NIH/NCI award R01 CA126993, research grant from Varian Medical Systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-the-Fly Motion-Compensated Cone-Beam CT Using an a Priori Motion Model

Respiratory motion causes artifacts in slow-rotating cone-beam (CB) computed tomography (CT) images acquired for example for image guidance of radiotherapy. Respiration-correlated CBCT has been proposed to correct for the respiratory motion, but the use of a subset of the CB projections to reconstruct each frame of the 4D CBCT image limits their quality, thus requiring a longer acquisition time...

متن کامل

Prediction-driven Respiratory Motion Atlas Formation for 4D Image-guided Radiation Therapy in Lung

Respiratory motion challenges lung radiation therapy with uncertainties of the location of important anatomical structures in the thorax. To capture the trajectory of the motion, dense image matching methods and learning-based motion prediction methods have been commonly used. However, both methods have limitations. Serious motion artifacts in treatment-guidance images, such as streak artifacts...

متن کامل

Usability assessment of cone beam computed tomography with a full-fan mode bowtie filter compared to that with a half-fan mode bowtie filter

Background: In intensity modulated radiation therapy, cone beam computed tomography (CT) has been used to evaluate patients prior to treatment. This study conducted a comparative evaluation of the image reconstruction ability of the clinically used half-fan bowtie filter and the full-fan bowtie filter. Materals and Methods: A CT simulation marker was inserted inside a human phantom, and the pel...

متن کامل

Award Number : DAMD 17 - 03 - 1 - 0657 TITLE : Multiple Aperture Radiation Therapy ( MART ) for Breast Cancer

On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360◦ scan) in acquiring the CBCT projection data, the patient’s respiratory motion causes serious problems such as blurring, doubling, streak...

متن کامل

Evaluation of the gray level in CBCT systems and its relationship with HU in CT Scanners

Introduction: Cone-beam CT (CBCT) is an imaging system which offers three-dimensional (3D), multiplanar images and has many advantages over computed tomography (CT) including shorter acquisition times for the resolution desired in dentistry, lower radiation dose to the patient, reasonable price and higher spatial resolution but CBCT scanners are unable to display actual Hounsf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part7  شماره 

صفحات  -

تاریخ انتشار 2012